
h5preserve Documentation
Release 0.19.0+0.gae96e87.dirty

James Tocknell

Jan 08, 2024





CONTENTS

1 Why use h5preserve? 3

2 Why the name? 5

3 Citing h5preserve 7
3.1 Quickstart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Installing h5preserve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Contributing to h5preserve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6 Citing h5preserve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Indices and tables 25

Python Module Index 27

Index 29

i



ii



h5preserve Documentation, Release 0.19.0+0.gae96e87.dirty

h5preserve is a wrapper around h5py and hdf5, providing easier serialisation of native python types. Its design is
inspired by Camel, and follows its philosophy.

CONTENTS 1

https://www.h5py.org/
https://support.hdfgroup.org/HDF5/
https://eev.ee/release/2015/10/15/dont-use-pickle-use-camel/
https://camel.readthedocs.io/en/latest/camel.html#camel-s-philosophy


h5preserve Documentation, Release 0.19.0+0.gae96e87.dirty

2 CONTENTS



CHAPTER

ONE

WHY USE H5PRESERVE?

The purpose of h5preserve is to provide a simple serialisation library to hdf5 files. Hence h5preserve has support
for complex numerical data, multidimensional arrays etc., which other serialisation formats may not represent as effec-
tively. h5preserve makes it easy to split out the interaction with hdf5 files from the main logic of your code. Since
h5preserve is designed to hide the underlying hdf5 file, large files where memory usage is a concern do not work well
with h5preserve. In this case, h5preserve provides easy access to the underlying h5py objects, or you may want to
look at using pytables, which provides a more database-like interface to hdf5 files.

3

https://support.hdfgroup.org/HDF5/
https://support.hdfgroup.org/HDF5/
https://support.hdfgroup.org/HDF5/
https://www.h5py.org/
https://www.pytables.org/
https://support.hdfgroup.org/HDF5/


h5preserve Documentation, Release 0.19.0+0.gae96e87.dirty

4 Chapter 1. Why use h5preserve?



CHAPTER

TWO

WHY THE NAME?

The name comes from the “h5” label associated with hdf5, and the idea of preserving or pickling data.

5

https://support.hdfgroup.org/HDF5/


h5preserve Documentation, Release 0.19.0+0.gae96e87.dirty

6 Chapter 2. Why the name?



CHAPTER

THREE

CITING H5PRESERVE

If you find h5preserve useful in your research, please cite the JOSS paper, as well as h5preserve’s dependencies, h5py,
numpy and hdf5. Further information about citing h5preserve, including specific releases, can be found at Citing
h5preserve.

Contents:

3.1 Quickstart

Assume you have a class which represents some experiment you’ve run:

class Experiment:
def __init__(self, data, time_started):

self.data = data
self.time_started = time_started

where data is some numpy array containing the experimental data, and time_started is a string containing time and
data when the experiment was started (we’re using a string in this case, but it could be an datetime object from the
python standard library, or some other representation of time).

To save an instance of Experiment to a group in a file, you could do:

experiment = Experiment(
data=np.linspace(2e6, 5e6, 1000),
time_started="2019-01-01T00:00:00.000000+00:00",

)

grp["MyExperiment"] = experiment.data
grp["MyExperiment"].attrs["time started"] = experiment.time_started

and read it back with:

experiment = Experiment(
data=grp["MyExperiment"][:],
time_started=grp["MyExperiment"].attrs["time started"]

)

which is fine but:

1. You could forget to slice/convert the dataset to a numpy array, and then try to use the dataset in a numerical
expression. Also, if you are using a special subclass of numpy array, slicing will not return a instance of that
class.

7

https://joss.theoj.org/papers/10.21105/joss.00581/
https://www.h5py.org/
https://numpy.org/
https://support.hdfgroup.org/HDF5/
https://docs.python.org/3/library/datetime.html#module-datetime


h5preserve Documentation, Release 0.19.0+0.gae96e87.dirty

2. Similarly, hdf5 attributes can only represent certain types, and if you forget to convert back to the native python
type. . .

3. Your experiment changes, and you need add or remove metadata, or your experiment becomes comprised of
multiple datasets. You could keep track of versions, but it’s another piece of metadata, and you will need to
validate that the version in the file matches what is written.

This represents time spent coding up validation code, which has to be tested, and so forth. For short scripts, this can
become come to dominate the code. Instead, using h5preserve, you can write a dump function, and a load function,
and let h5preserve deal with the rest. For the above example, reading and writing become:

grp["MyExperiment"] = experiment
experiment = grp["MyExperiment"]

with our dump function being:

@registry.dumper(Experiment, "Experiment", version=1)
def _exp_dump(experiment):

return DatasetContainer(
data=experiment.data,
attrs={

"time started": experiment.time_started
}

)

and our load function being:

@registry.loader("Experiment", version=1)
def _exp_load(dataset):

return Experiment(
data=dataset["data"],
time_started=dataset["attrs"]["time started"]

)

3.2 Installing h5preserve

h5preserve is distributed via PyPI, and behaves like a normal python package; you can install it with pip by running:

pip install h5preserve

Further information about how to use pip to install Python packages can be found at https://packaging.python.org/
tutorials/installing-packages/.

Note that h5preserve uses h5py, which may require a C compiler and the hdf5 library to install. On common sys-
tems (Windows, MacOS, most Linux), there are pre-built wheels for h5py, which will automatically be installed
when installing h5preserve if they are available. Other systems should see the [h5py installation instructions](http:
//docs.h5py.org/en/latest/build.html) for more information about how to install h5py.

If you have any problems installing h5preserve, please file a issue at https://github.com/h5preserve/h5preserve/issues.

8 Chapter 3. Citing h5preserve

https://pypi.org/project/h5preserve/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
http://docs.h5py.org/en/latest/build.html
http://docs.h5py.org/en/latest/build.html
https://github.com/h5preserve/h5preserve/issues


h5preserve Documentation, Release 0.19.0+0.gae96e87.dirty

3.3 Usage

To understand how h5preserve works, you need to remember the following concepts:

dumper
A function which converts your object to a representation ready to be written to an HDF5 file. Has an associated
class, version and class label.

loader
A function which converts a representation of a HDF5 object (group, dataset etc.) to an instance of a specified
class. Has an associated version and class label.

registry
A collection of dumpers and loaders, providing a common namespace. h5preserve comes with a few which
convert common Python types.

registry collection
A collection of registries. Deals with choosing the correct registry, dumper and loader to use, including version
locking.

So a complete example based on the Quickstart example is:

import numpy as np
from h5preserve import (

open as h5open, Registry, new_registry_list, DatasetContainer
)

registry = Registry("experiment")

class Experiment:
def __init__(self, data, time_started):

self.data = data
self.time_started = time_started

@registry.dumper(Experiment, "Experiment", version=1)
def _exp_dump(experiment):

return DatasetContainer(
data=experiment.data,
attrs={

"time started": experiment.time_started
}

)

@registry.loader("Experiment", version=1)
def _exp_load(dataset):

return Experiment(
data=dataset["data"],
time_started=dataset["attrs"]["time started"]

)

my_cool_experiment = Experiment(np.array([1,2,3,4,5]), 10)

with h5open("my_data_file.hdf5", new_registry_list(registry), mode='w') as f:
f["cool experiment"] = my_cool_experiment

(continues on next page)

3.3. Usage 9



h5preserve Documentation, Release 0.19.0+0.gae96e87.dirty

(continued from previous page)

with h5open("my_data_file.hdf5", new_registry_list(registry), mode='r') as f:
my_cool_experiment_loaded = f["cool experiment"]

print(
my_cool_experiment_loaded.time_started ==
my_cool_experiment.time_started

)

Whilst for this simple case it’s probably overkill to use h5preserve, h5preserve deals quite easily changing require-
ments, such as adding additional properties to Experiment via versioning, splitting Experiment into multiple classes
via recursively converting python objects, or even more complex requirements via being able to only read and convert
when needed, or to dump subsets of a class before dumping the whole class.

The rest of this guide provides information about how to deal with specific topics (versioning, advanced loading and
dumping), but these topics are not required to use h5preserve.

3.3.1 How Versioning Works

Valid versions for dumpers are either integers or None. Valid versions for loaders are integers, None, any or all. The
order in which loaders are used are:

1. None if available

2. all if available

3. The version which is stored in the file (if available)

4. any if available

Dumpers are similar:

1. If a version of a dumper is locked, use that one

2. None if available

3. The latest version of the dumper available

Using None should not be done lightly, as it forces that the dumper and loader not change in any way, as there is no way
of overriding which loader h5preserve uses when None is available. It may be better to have a dumper with an integer
version and use a loader with a version of all, which can be modified at the python level, and not require modification
of the existing file.

A versioning example

Imagine a class like Experiment above; you have some data, and some metadata (to keep the example simple, we’re
only going to have one piece of metadata, and no data):

class ModelOutput:
def __init__(self, a):

self.a = a

a represents some input parameter to our model. We also write the associated dumper and loader:

@registry.dumper(ModelOutput, "ModelOutput", version=1)
def _exp_dump(modeloutput):

return DatasetContainer(
(continues on next page)

10 Chapter 3. Citing h5preserve

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#any
https://docs.python.org/3/library/functions.html#all
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#all
https://docs.python.org/3/library/functions.html#any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#all


h5preserve Documentation, Release 0.19.0+0.gae96e87.dirty

(continued from previous page)

attrs={
"a": modeloutput.a

}
)

@registry.loader("ModelOutput", version=1)
def _exp_load(dataset):

return ModelOutput(
a=dataset["attrs"]["a"]

)

However, later on we realise we should have used b instead of a. This could be because we want to radians instead of
degrees, using b is more meaningful in the model, or some other reason we have, something which motivates a change
to the class. We change our class:

class ModelOutput:
def __init__(self, b):

self.b = b

and create a new dumper and loader for version 2 of this class:

@registry.dumper(ModelOutput, "ModelOutput", version=2)
def _exp_dump(modeloutput):

return DatasetContainer(
attrs={

"b": modeloutput.b
}

)

@registry.loader("ModelOutput", version=2)
def _exp_load(dataset):

return ModelOutput(
b=dataset["attrs"]["b"]

)

But then, how do we load our old data? Let’s assume that 𝑏 = 2𝑎. So we’d write a loader for version 1 which converts
a to b:

@registry.loader("ModelOutput", version=1)
def _exp_load(dataset):

return ModelOutput(
b = 2 * dataset["attrs"]["a"]

)

What about a dumper? We can write one also, but it may be that we add additional metadata instead of changing its
representation, so we can’t store all our metadata in the version 1 format, so we can’t write a dumper for version 1.

One thing h5preserve cannot do is check that your code is forward or backwards compatible between different ver-
sions, that has to be managed by the user (there’s some code on providing some tools to help with automated testing of
loaders and dumpers being written, but that will still require having something to test against).

3.3. Usage 11



h5preserve Documentation, Release 0.19.0+0.gae96e87.dirty

Locking Dumper Version

It is possible to force which dumper version is going to used, via RegistryContainer.lock_version(). An ex-
ample how to do this, given Experiment is a class you want to dump version 1 of, and registries is a instance of
RegistryContainer which contains a Registry that can dump Experiment is:

registries = new_registry_list(registry)

registries.lock_version(Experiment, 1)

3.3.2 Controlling how Classes are Dumped

h5preserve will recursively dump arguments passed to GroupContainer or DatasetContainer (as well as any
variations on those classes), as long as the arguments are supported by h5py for writing (e.g. numpy arrays), or there
exists a dumper for each of the arguments. Hence, dumpers should only need to worry about name which each attribute
of the class is saved to, and whether they should be saved as group/dataset attributes or as groups/datasets (currently
there is no support for loaders/dumpers that only write group/dataset attributes without creating a new group/dataset).

Using DatasetContainer and GroupContainer

The Quickstart example above used DatasetContainer; DatasetContainer takes keyword arguments which are
passed on to h5py.Group.create_dataset(), as well as an attrs keyword argument which is used to set attributes
on the associated HDF5 dataset.

GroupContainer behaves similar to DatasetContainer; it also takes keyword arguments, as well as an additional
attrs keyword argument. However, these keywords names are used as the name for the subgroup or dataset created
from the keyword arguments. Modifying the Quickstart example to have it use a group instead of a dataset is simple,
we just change the loader as shown below:

@registry.dumper(Experiment, "Experiment", version=1)
def _exp_dump(experiment):

return GroupContainer(
experiment_data=experiment.data,
attrs={

"time started": experiment.time_started
}

)

The start time is now written to an attribute on the HDF5 group, and experiment.data is written to either a dataset
or group, depending on what type it is. If it was as above a numpy array, then it would be written as a dataset (but it
would not have "time started" as an attribute). Loading from a group is the same as loading from a dataset:

@registry.loader("Experiment", version=1)
def _exp_load(group):

return Experiment(
data=group["experiment_data"],
time_started=group["attrs"]["time started"]

)

12 Chapter 3. Citing h5preserve



h5preserve Documentation, Release 0.19.0+0.gae96e87.dirty

3.3.3 Using On-Demand Loading

The purpose of on-demand loading is to deal with cases where recursively loading a group takes up too much memory.
On-demand loading requires modifications to the class which contains the objects which are to be loaded on-demand.
The modifications are:

• Wrapping attributes and other objects which should be loaded on-demand with the wrap_on_demand() function
when set, and unwrapping the objects when needed.

• Adding cls._h5preserve_update() as a callback function to be called when the class is dumped. This call-
back must wrap any of the above objects which are to be loaded on-demand with wrap_on_demand() as above.

wrap_on_demand() returns an instance of OnDemandWrapper, which can be called with no arguments to return the
original object (similar to a weakref).

An example of the necessary code for class which subclasses collections.abc.MutableMapping and which stores
its members in _mapping is:

def __getitem__(self, key):
value = self._mapping[key]
if isinstance(value, OnDemandWrapper):

value = value()
self._mapping[key] = value # acting as cache, this can be skipped if desired

return value

def __setitem__(self, key, val):
self._mapping[key] = wrap_on_demand(self, key, val)

def _h5preserve_update(self):
for key, val in self.items():

self._mapping[key] = wrap_on_demand(self, key, val)

A workaround where a group/dataset takes up too much memory but on-demand loading is not set up is to open the
file via h5py or use the h5py_file or h5py_group attribute to access the underlying h5py.Group. Using this group
you can then access a subset of the groups that would be loaded, which you can pass to H5PreserveGroup to use your
loaders.

3.3.4 Using Delayed Dumping

Delayed dumping is similar to on-demand loading, however it needs less changes to the containing class. Assigning
an instance of DelayedContainer in the necessary location in the class is sufficient in preparing h5preserve for
delayed dumping of the object. When the data is ready to be dumped, calling write_container() dumps the data to
the file as if it has been dumped when the containing class had been dumped. In a class where it is an attribute which
is to be dumped later, the following is sufficient:

class ContainerClass:
def __init__(self, data=None):

if data is None:
data = DelayedContainer()

self._data = data

@property
def data(self):

return self._data

(continues on next page)

3.3. Usage 13

https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.h5py.org/en/latest/high/group.html#h5py.Group


h5preserve Documentation, Release 0.19.0+0.gae96e87.dirty

(continued from previous page)

@data.setter
def data(self, data):

if isinstance(self._data, DelayedContainer):
self._data.write_container(soln)
self._data = data

else:
raise RuntimeError("Cannot change data")

3.3.5 Built-in Loaders, Dumpers and Registries

h5preserve comes with a number of predefined loader/dumper pairs for built-in python types. The defaults for
new_registry_list() automatically include these registries. If you do not wish to use the predefined registries,
you should instead instantiate RegistryContainer manually.

The following table outlines the supported types, and how they are encoded in the HDF5 file.

Type Encoding Included by default
None h5py.Empty True
int a dataset True
float a dataset True
bool a dataset True
bytes (py2 str) a dataset True
unicode (py3 str) a dataset True
tuple a dataset True
list a dataset True

Manually Creating the Registry Container

To create the Registry Container manually, replace all calls to new_registry_list() with RegistryContainer.
This will allow you to select which built-in registries (if any) you which to use. For example, if you only want to convert
None to h5py.Empty, you would do:

from h5preserve import Registry, RegistryContainer
from h5preserve.additional_registries import none_python_registry

registry = Registry("my cool registry")

registries = RegistryContainer(registry, none_python_registry)

You could then pass registries to h5preserve.open, or lock to a specific version, or anything else you’d do after
calling new_registry_list().

14 Chapter 3. Citing h5preserve

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None


h5preserve Documentation, Release 0.19.0+0.gae96e87.dirty

3.4 Reference

h5preserve is a thin wrapper around h5py, providing easier serialisation of native python types.

copyright

(c) 2016 James Tocknell

license
3-clause BSD

class h5preserve.DatasetContainer(attrs=None, **kwargs)
Representation of an hdf5 dataset for use in h5preserve.

Parameters

• attrs (Mapping) – mapping containing the attributes of the group

• **kwargs – properties of the group, which get passed to create group

clear()→ None. Remove all items from D.

get(k[, d ])→ D[k] if k in D, else d. d defaults to None.

items()→ a set-like object providing a view on D's items

keys()→ a set-like object providing a view on D's keys

pop(k[, d ])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

popitem()→ (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.

setdefault(k[, d ])→ D.get(k,d), also set D[k]=d if k not in D

update([E, ]**F)→ None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

values()→ an object providing a view on D's values

class h5preserve.DelayedContainer

Helper class for allowing delayed writing of containers to hdf5 files.

write_container(data)
Write data to hdf5 file with the associated located of the DelayedContainer.

class h5preserve.GroupContainer(attrs=None, **kwargs)
Representation of an hdf5 group for use in h5preserve.

Parameters

• attrs (Mapping) – mapping containing the attributes of the group

• **kwargs – datasets or subgroups to add to the group

clear()→ None. Remove all items from D.

get(k[, d ])→ D[k] if k in D, else d. d defaults to None.

3.4. Reference 15



h5preserve Documentation, Release 0.19.0+0.gae96e87.dirty

items()→ a set-like object providing a view on D's items

keys()→ a set-like object providing a view on D's keys

pop(k[, d ])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

popitem()→ (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.

setdefault(k[, d ])→ D.get(k,d), also set D[k]=d if k not in D

update([E, ]**F)→ None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

values()→ an object providing a view on D's values

class h5preserve.H5PreserveFile(h5py_file, registries)
Thin wrapper around h5py.File to automatically use h5preserve when accessing the file contents.

Acts like h5preserve.H5PreserveGroup, but allows access to the associated h5py.File instance via
h5py_file.

Parameters

• h5py_file (a h5py.File) – the hdf5 file to wrap

• registries (RegistryContainer) – the collection of registries that you want to use to
read from the hdf5 file

clear()→ None. Remove all items from D.

create_group(name)
Creates a new group in the associated hdf5 file

Parameters
name (string, or other identifier accepted by h5py) – name of the new group

Returns
The new group wrapped by H5PreserveGroup

Return type
H5PreserveGroup

get(k[, d ])→ D[k] if k in D, else d. d defaults to None.

property h5py_file

the instance of h5py.File which H5PreserveFile wraps

Type
h5py.File

property h5py_group

the instance of h5py.Group which H5PreserveGroup wraps

Type
h5py.Group

items()→ a set-like object providing a view on D's items

16 Chapter 3. Citing h5preserve

https://docs.h5py.org/en/latest/high/file.html#h5py.File
https://docs.h5py.org/en/latest/high/group.html#h5py.Group


h5preserve Documentation, Release 0.19.0+0.gae96e87.dirty

keys()→ a set-like object providing a view on D's keys

pop(k[, d ])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

popitem()→ (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.

require_group(name)
Returns the group associated with name, creating it if necessary.

Parameters
name (string, or other identifier accepted by h5py) – name of the desired
group

Returns
The group wrapped by H5PreserveGroup

Return type
H5PreserveGroup

setdefault(k[, d ])→ D.get(k,d), also set D[k]=d if k not in D

update([E, ]**F)→ None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

values()→ an object providing a view on D's values

class h5preserve.H5PreserveGroup(h5py_group, registries)
Thin wrapper around h5py.Group to automatically use h5preserve when accessing the group contents.

Parameters

• h5py_group (h5py.Group) –

• registries (RegistryContainer) – the collection of registries that you want to use to
read from the hdf5 file

clear()→ None. Remove all items from D.

create_group(name)
Creates a new group in the associated hdf5 file

Parameters
name (string, or other identifier accepted by h5py) – name of the new group

Returns
The new group wrapped by H5PreserveGroup

Return type
H5PreserveGroup

get(k[, d ])→ D[k] if k in D, else d. d defaults to None.

property h5py_group

the instance of h5py.Group which H5PreserveGroup wraps

Type
h5py.Group

3.4. Reference 17

https://docs.h5py.org/en/latest/high/group.html#h5py.Group
https://docs.h5py.org/en/latest/high/group.html#h5py.Group


h5preserve Documentation, Release 0.19.0+0.gae96e87.dirty

items()→ a set-like object providing a view on D's items

keys()→ a set-like object providing a view on D's keys

pop(k[, d ])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

popitem()→ (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.

require_group(name)
Returns the group associated with name, creating it if necessary.

Parameters
name (string, or other identifier accepted by h5py) – name of the desired
group

Returns
The group wrapped by H5PreserveGroup

Return type
H5PreserveGroup

setdefault(k[, d ])→ D.get(k,d), also set D[k]=d if k not in D

update([E, ]**F)→ None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

values()→ an object providing a view on D's values

class h5preserve.HardLink(obj)
Represent a h5py hard link to be created via h5preserve.

Parameters
obj (string, h5py.Group or h5py.Dataset) – the h5py object that the hard link points to,
can either be an h5py object, or a string with the absolute path of the object

property h5py_obj

the object which the hard link will point to

Type
h5py.Group or h5py.Dataset

property path

The path this object points to

class h5preserve.OnDemandDatasetContainer(attrs=None, **kwargs)
Subclass of DatasetContainer which supports accessing dataset data on demand, rather that loading immediately.

clear()→ None. Remove all items from D.

get(k[, d ])→ D[k] if k in D, else d. d defaults to None.

items()→ a set-like object providing a view on D's items

keys()→ a set-like object providing a view on D's keys

18 Chapter 3. Citing h5preserve

https://docs.h5py.org/en/latest/high/group.html#h5py.Group
https://docs.h5py.org/en/latest/high/dataset.html#h5py.Dataset
https://docs.h5py.org/en/latest/high/group.html#h5py.Group
https://docs.h5py.org/en/latest/high/dataset.html#h5py.Dataset


h5preserve Documentation, Release 0.19.0+0.gae96e87.dirty

pop(k[, d ])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

popitem()→ (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.

setdefault(k[, d ])→ D.get(k,d), also set D[k]=d if k not in D

update([E, ]**F)→ None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

values()→ an object providing a view on D's values

class h5preserve.OnDemandGroupContainer(attrs=None, **kwargs)
Subclass of GroupContainer which supports accessing group members on demand, rather that loading immedi-
ately.

clear()→ None. Remove all items from D.

get(k[, d ])→ D[k] if k in D, else d. d defaults to None.

items()→ a set-like object providing a view on D's items

keys()→ a set-like object providing a view on D's keys

pop(k[, d ])→ v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

popitem()→ (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.

setdefault(k[, d ])→ D.get(k,d), also set D[k]=d if k not in D

update([E, ]**F)→ None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

values()→ an object providing a view on D's values

class h5preserve.OnDemandWrapper(func)
Wrapper which represents a container which can be accessed on demand.

class h5preserve.Registry(name)
Register of functions for converting between hdf5 and python.

This is the core of h5preserve, containing the information about how to convert to and from hdf5 files, what
version to use, and the namespace of created data.

Parameters
name (string) – name of registry for identification purposes

dumper(cls, label, version)
Decorator function to create a dumper function.

Parameters

• cls (any class) – the class which this dumper operates on

• label (string) – the label or tag associated with this class

3.4. Reference 19



h5preserve Documentation, Release 0.19.0+0.gae96e87.dirty

• version (integer, None) – The version of the output that this function returns.

freeze()

Freeze the registry, preventing further changes to the registry.

loader(label, version)
Decorator function to create a loader function.

Parameters

• label (string) – the label or tag associated with this class

• version (integer, any, all, None) – The version of the output that this function
reads.

property name

name of the registry

Type
str

class h5preserve.RegistryContainer(*registries)
Ordered container of registries which manages interaction with the hdf5 file.

Parameters
*registries (list of Registry) – the list of registries to be associated with this container

append(value)
S.append(value) – append value to the end of the sequence

clear()→ None -- remove all items from S

count(value)→ integer -- return number of occurrences of value

dump(obj)
Dump native python object to h5preserve representation

Parameters
obj – the object to dump

extend(values)
S.extend(iterable) – extend sequence by appending elements from the iterable

from_file(h5py_obj)
Return an representation of a hdf5 object from a hdf5 file

Parameters
h5py_obj (a h5py object, e.g. group, dataset) –

index(value[, start[, stop]])→ integer -- return first index of value.
Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but recommended.

insert(index, value)
S.insert(index, value) – insert value before index

load(obj)
Load native python object from h5preserve representation

Parameters
obj – the object to load

20 Chapter 3. Citing h5preserve

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list


h5preserve Documentation, Release 0.19.0+0.gae96e87.dirty

lock_version(cls, version)
Lock output version for a specific class

Parameters

• cls (any class) – the class to lock the version of

• version (integer, any, all, None) – the version which will always be used

pop([index ])→ item -- remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

property registries

Iterator over the registries contained in the order they were added.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

reverse()

S.reverse() – reverse IN PLACE

to_file(h5py_group, key, val)
Dump h5preserve object to hdf5 file

Parameters

• h5py_group (h5py.Group) – the group to add the object to

• key (string) – the name for the object

• val – the object to add

h5preserve.new_registry_list(*registries)
Create a new list of registries which includes builtin registries.

Parameters
*registries (list of Registry) – the list of registries to be associated with this container

h5preserve.open(filename, registries, *, mode, **kwargs)
Open a hdf5 file wrapped with h5preserve.

Parameters

• filename (string, or other identifier accepted by h5py.File) –

• registries (RegistryContainer) – the collection of registries that you want to use to
read from the hdf5 file

• **kwargs – additional keyword arguments to pass to h5py.File

h5preserve.wrap_on_demand(obj, key, val)
Wrap val such that it can be used on demand.

wrap_on_demand returns either the original val if obj has not yet been dumped, or a wrapped version of val if
obj has been dumped.

wrap_on_demand automatically deals with wrapping/unwrapping if needed, so it is save to repeatedly call on
the same object.

Parameters

• obj (any dumpable object) – the object which val is a member of or an attribute of

• key (string) – the key to be used when writing out val

3.4. Reference 21

https://docs.python.org/3/library/stdtypes.html#list


h5preserve Documentation, Release 0.19.0+0.gae96e87.dirty

• val (any dumpable object) – the object to be wrapped

3.5 Contributing to h5preserve

We welcome contributions to h5preserve, subject to our code of conduct whether it is improvements to the documen-
tation or examples, bug reports or code improvements.

3.5.1 Reporting Bugs

Bugs should be reported to https://github.com/h5preserve/h5preserve. Please include what version of Python this
occurs on, as well as which operating system. Information about your h5py and HDF5 configuration is also helpful.

3.5.2 Patches and Pull Requests

The main repository is https://github.com/h5preserve/h5preserve, please make pull requests against that repository,
and the branch that pull requests should be made on is master (backporting fixes will be done separately if necessary).

3.5.3 Running the tests

h5preserve uses tox to run its tests. See https://tox.readthedocs.io/en/latest/ for more information about tox, but the
simplest method is to run:

tox

in the top level of the git repository.

3.5.4 Making a release

Current minimal working method (this doesn’t produce a release commit, deal with DOIs needing to be preregistered,
not automated, not signed etc.):

1. Checkout the latest commit on the master branch on the main repository locally. Ensure the work directory is
clean (git purge/git clean -xfd).

2. Tag this commit with an annotated tag, with the format being v*.*.* (git tag -a v*.*.*; I should sign
these. . . ). The tag should mention the changes in this release.

3. Push tag to github.

4. Create a release on github using the web interface, copying the content of the tag.

5. Build sdist and wheel (python setup.py sdist bdist_wheel), and upload to PyPI (twine upload dist/
*).

22 Chapter 3. Citing h5preserve

https://github.com/h5preserve/h5preserve/blob/master/code_of_conduct.md
https://github.com/h5preserve/h5preserve
https://github.com/h5preserve/h5preserve
https://tox.readthedocs.io/en/latest/
https://tox.readthedocs.io/en/latest/


h5preserve Documentation, Release 0.19.0+0.gae96e87.dirty

3.6 Citing h5preserve

The preferred method of citing h5preserve is to cite the JOSS Paper, for which the bibtex entry is below:

@article{h5preserve,
doi = {10.21105/joss.00581},
url = {https://doi.org/10.21105/joss.00581},
year = {2018},
month = {feb},
publisher = {The Open Journal},
volume = {3},
number = {22},
pages = {581},
author = {James Tocknell},
title = {h5preserve: Thin wrapper around h5py, inspired by camel},
journal = {The Journal of Open Source Software}

}

DOIs of individual releases can be found on Zenodo, which can be cited in addition to the JOSS paper.

We also strongly encourage citing the dependencies of h5preserve, numpy and h5py.

3.6. Citing h5preserve 23

https://joss.theoj.org/papers/10.21105/joss.00581/
https://doi.org/10.5281/zenodo.593007
https://numpy.org/citing-numpy/
https://github.com/h5py/h5py/issues/743


h5preserve Documentation, Release 0.19.0+0.gae96e87.dirty

24 Chapter 3. Citing h5preserve



CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

25



h5preserve Documentation, Release 0.19.0+0.gae96e87.dirty

26 Chapter 4. Indices and tables



PYTHON MODULE INDEX

h
h5preserve, 15

27



h5preserve Documentation, Release 0.19.0+0.gae96e87.dirty

28 Python Module Index



INDEX

A
append() (h5preserve.RegistryContainer method), 20

C
clear() (h5preserve.DatasetContainer method), 15
clear() (h5preserve.GroupContainer method), 15
clear() (h5preserve.H5PreserveFile method), 16
clear() (h5preserve.H5PreserveGroup method), 17
clear() (h5preserve.OnDemandDatasetContainer

method), 18
clear() (h5preserve.OnDemandGroupContainer

method), 19
clear() (h5preserve.RegistryContainer method), 20
count() (h5preserve.RegistryContainer method), 20
create_group() (h5preserve.H5PreserveFile method),

16
create_group() (h5preserve.H5PreserveGroup

method), 17

D
DatasetContainer (class in h5preserve), 15
DelayedContainer (class in h5preserve), 15
dump() (h5preserve.RegistryContainer method), 20
dumper() (h5preserve.Registry method), 19

E
extend() (h5preserve.RegistryContainer method), 20

F
freeze() (h5preserve.Registry method), 20
from_file() (h5preserve.RegistryContainer method),

20

G
get() (h5preserve.DatasetContainer method), 15
get() (h5preserve.GroupContainer method), 15
get() (h5preserve.H5PreserveFile method), 16
get() (h5preserve.H5PreserveGroup method), 17
get() (h5preserve.OnDemandDatasetContainer

method), 18
get() (h5preserve.OnDemandGroupContainer method),

19

GroupContainer (class in h5preserve), 15

H
h5preserve
module, 15

H5PreserveFile (class in h5preserve), 16
H5PreserveGroup (class in h5preserve), 17
h5py_file (h5preserve.H5PreserveFile property), 16
h5py_group (h5preserve.H5PreserveFile property), 16
h5py_group (h5preserve.H5PreserveGroup property),

17
h5py_obj (h5preserve.HardLink property), 18
HardLink (class in h5preserve), 18

I
index() (h5preserve.RegistryContainer method), 20
insert() (h5preserve.RegistryContainer method), 20
items() (h5preserve.DatasetContainer method), 15
items() (h5preserve.GroupContainer method), 15
items() (h5preserve.H5PreserveFile method), 16
items() (h5preserve.H5PreserveGroup method), 17
items() (h5preserve.OnDemandDatasetContainer

method), 18
items() (h5preserve.OnDemandGroupContainer

method), 19

K
keys() (h5preserve.DatasetContainer method), 15
keys() (h5preserve.GroupContainer method), 16
keys() (h5preserve.H5PreserveFile method), 16
keys() (h5preserve.H5PreserveGroup method), 18
keys() (h5preserve.OnDemandDatasetContainer

method), 18
keys() (h5preserve.OnDemandGroupContainer

method), 19

L
load() (h5preserve.RegistryContainer method), 20
loader() (h5preserve.Registry method), 20
lock_version() (h5preserve.RegistryContainer

method), 20

29



h5preserve Documentation, Release 0.19.0+0.gae96e87.dirty

M
module

h5preserve, 15

N
name (h5preserve.Registry property), 20
new_registry_list() (in module h5preserve), 21

O
OnDemandDatasetContainer (class in h5preserve), 18
OnDemandGroupContainer (class in h5preserve), 19
OnDemandWrapper (class in h5preserve), 19
open() (in module h5preserve), 21

P
path (h5preserve.HardLink property), 18
pop() (h5preserve.DatasetContainer method), 15
pop() (h5preserve.GroupContainer method), 16
pop() (h5preserve.H5PreserveFile method), 17
pop() (h5preserve.H5PreserveGroup method), 18
pop() (h5preserve.OnDemandDatasetContainer

method), 18
pop() (h5preserve.OnDemandGroupContainer method),

19
pop() (h5preserve.RegistryContainer method), 21
popitem() (h5preserve.DatasetContainer method), 15
popitem() (h5preserve.GroupContainer method), 16
popitem() (h5preserve.H5PreserveFile method), 17
popitem() (h5preserve.H5PreserveGroup method), 18
popitem() (h5preserve.OnDemandDatasetContainer

method), 19
popitem() (h5preserve.OnDemandGroupContainer

method), 19

R
registries (h5preserve.RegistryContainer property),

21
Registry (class in h5preserve), 19
RegistryContainer (class in h5preserve), 20
remove() (h5preserve.RegistryContainer method), 21
require_group() (h5preserve.H5PreserveFile

method), 17
require_group() (h5preserve.H5PreserveGroup

method), 18
reverse() (h5preserve.RegistryContainer method), 21

S
setdefault() (h5preserve.DatasetContainer method),

15
setdefault() (h5preserve.GroupContainer method),

16
setdefault() (h5preserve.H5PreserveFile method), 17

setdefault() (h5preserve.H5PreserveGroup method),
18

setdefault() (h5preserve.OnDemandDatasetContainer
method), 19

setdefault() (h5preserve.OnDemandGroupContainer
method), 19

T
to_file() (h5preserve.RegistryContainer method), 21

U
update() (h5preserve.DatasetContainer method), 15
update() (h5preserve.GroupContainer method), 16
update() (h5preserve.H5PreserveFile method), 17
update() (h5preserve.H5PreserveGroup method), 18
update() (h5preserve.OnDemandDatasetContainer

method), 19
update() (h5preserve.OnDemandGroupContainer

method), 19

V
values() (h5preserve.DatasetContainer method), 15
values() (h5preserve.GroupContainer method), 16
values() (h5preserve.H5PreserveFile method), 17
values() (h5preserve.H5PreserveGroup method), 18
values() (h5preserve.OnDemandDatasetContainer

method), 19
values() (h5preserve.OnDemandGroupContainer

method), 19

W
wrap_on_demand() (in module h5preserve), 21
write_container() (h5preserve.DelayedContainer

method), 15

30 Index


	Why use h5preserve?
	Why the name?
	Citing h5preserve
	Quickstart
	Installing h5preserve
	Usage
	How Versioning Works
	A versioning example
	Locking Dumper Version

	Controlling how Classes are Dumped
	Using DatasetContainer and GroupContainer

	Using On-Demand Loading
	Using Delayed Dumping
	Built-in Loaders, Dumpers and Registries
	Manually Creating the Registry Container


	Reference
	Contributing to h5preserve
	Reporting Bugs
	Patches and Pull Requests
	Running the tests
	Making a release

	Citing h5preserve

	Indices and tables
	Python Module Index
	Index

